Проблема с большими радиальными зазорами в ANSYS TurboGrid

Сегодня мы решим с вами небольшую проблему, связанную с некорректной работой сеточного препроцессора ANSYS TurboGrid при разбиении геометрии лопаточных машин центробежного типа при больших радиальных зазорах. Пример подобной турбины показан на рисунке ниже. Здесь показана проточная часть турбины центростремительного типа с радиальным зазором высотой ~ 10% от высоты лопаток.

1

Попробуем загрузить созданную в BladeGen геометрию в TurboGrid. Как мы и предполагали, препроцессор выдал ошибку. Что надо сделать, чтобы исправить эту ошибку?

2

Перейдите в раздел Machine Data и с помощью правой кнопки мыши откройте выпадающее меню. Далее выберите опцию Edit in Command Editor.

3В редакторе команд отредактируйте параметр Surface Extension Factor. Вместо значения 0.1 укажите 0.5.

4

После этого TurboGrid нормально воспроизведет созданную ранее геометрию, а вы сможете сгенерировать затем качественную структурированную сетку.

На этом все. Удачного Вам моделирования!

С уважением, Денис Хитрых
Директор АО «Симулабс».
2016-11-21_16-58-13

Инженеры АО «СимуЛабс» победили в конкурсе ANSYS HOF 2107

sailboat2016_halloffame

Поздравляем коллектив АО «СимуЛабс» с очередной большой победой!

В этом году наши коллеги Д.П. Хитрых и И.В. Погорнев в 5 раз стали победителями международного конкурса на лучший
инженерный проект, выполненный в программном комплексе ANSYS — ANSYS Hall of Fame Competition.

В этом году на суд компетентного жюри была представлена работа, посвященная численной проработке прототипа нового инновационного вспомогательного «движителя» для спортивной яхты. Прототип изделия основан на классической турбине со спиралевидными лопастями. Но в отличии от классического варианта, в новой турбине используются оптимизированные в ANSYS OptiSLang лопасти переменной толщины, гироскопическое стабилизирующее устройство и профилированный несущий корпус.

Данный проект носит исследовательский характер и не направлен на коммерческое использование.

Коллектив АО «СимуЛабс»,
30 декабря 2016 г., Москва.

Как декантировать вино. ANSYS CFD на службе у сомелье.

007Сегодня после долгого перерыва мы снова с вами погрузимся в мир многофазных течений. И попробуем смоделировать одну из канонических задач, связанных с капиллярностью. Но сначала я познакомлю вас с интересным опытом наших японских коллег, которые с помощью решателя ANSYS Fluent попытались смоделировать процесс аэрации вина в бокалах разной формы.

Для тех, кто ведет трезвый образ жизни, напоминаю, что декантирование (декантация) — это процесс отделения вина от осадка и насыщение его кислородом. При этом сомелье совершает руками серию магических движений. А сама процедура может занимать 10-15 минут и более. Чаще всего декантируют красные вина и реже белые. Отметим, что споры о полезности и объективности результатов этого процесса не утихают до сих пор. Поэтому работа японских инженеров заслуживает внимания. Они провели исследование бокалов различной формы на предмет интенсификации (или сокращения) процесса аэрации вина при контакте с кислородом.

2016-11-02_10-13-15

Для этого было решено использовать газодинамический пакет ANSYS Fluent самой последней версии на тот момент (17.0). Ниже показана анимация, иллюстрирующая результаты их фундаментального труда.

bokaly

В 17-м релизе ANSYS существенно упростилась процедура постановки 6DOF-задачи. Раньше для задания движения тела с 6-ю степенями свободы  необходимо было создавать и компилировать специальные UDF-макросы.  Но в Fluent 17.0 появилась специальная панель, которая сделала работу инженера-исследователя намного легче. При этом сохранилась возможность определять закон движения тела как на основе собственных пользовательских функций (UDF), так и с использованием возможностей System Coupling.

6dof

По результатам моделирования в номинации «Лучший аэрационный бокал-2016» победил бокал на длинной утонченной ножке.

rezultatyЕсли вы в совершенстве владеете японским языком, то более подробно про это исследование вы можете почитать по этой ссылке http://news.mynavi.jp/kikaku/2015/12/16/004/. А к капиллярам мы вернемся уже в следующем году.

С уважением, Денис П. Хитрых,
Директор АО «СимуЛабс».
2016-11-21_16-58-13

Мастер-класс: CFD расчет химического реактора #4.

reactorСегодня я опубликую последнюю (крайнюю) часть моего мастер-класса по расчету химического реактора в ANSYS CFX. Ранее мы с вами научились определять многоступенчатые реакции в CFX на основе предопределенных шаблонов; построили геометрическую модель реактора; сгенерировали расчетную сетку и пр. И нам осталось только определить граничные условия и настройки решателя. Чем мы сейчас и займемся.

На входе мы задаем массовый расход, параметры турбулентности и температуру реагентов.

2016-12-26_17-04-54

2016-12-26_17-05-42

Турбулентность мы определим через относительную интенсивность, равную 0.05, что эквивалентно Tu = 5%. Массовый расход = 0.6 кг/с и статическая температура = 333 К.

Кроме того, необходимо задать компонентный состав на входе в соответствии с таблицей, показанной ниже.

2016-12-26_17-26-55

Если просуммировать массовые доли всех компонентов на входе, то мы получим величину, равную 0.9868 (вместо 1). Пугаться не стоит: «недостающиеся» доли  (1-0.9868 = 0.0132) приходятся на «замороженный» (constraint) азот, для которого не решается уравнение переноса (см. рис. ниже).

Для определения «замороженного» компонента вам необходимо отредактировать свойства расчетного домена. Откройте закладку Fluid Models и укажите для азота N2 опцию Constraint. Для всех других компонент по-умолчанию будет установлена опция Transport Equation.

transport

Не выходя из режима редактирования свойств расчетного домена, задайте величину опорного давления (Reference Pressure) равной 0.35 МПа. В закладке Fluid Models для Heat Transfer укажите Thermal Energy; Turbulence = SST и Combustion = FRC (модель, описывающая скорости химических реакций — «антагонист» модели «быстрой» химии). В Material выбираем ранее созданный материал Chloroform.

На выходе определяем статическое давление, равное 0.0 Па. И, наконец, на стенках определяем граничное условие первого рода T = const = 800 К.

Для начальной инициализации оставляем все настройки по-умолчанию. Задаем максимальное количество итераций = 400. Шаг по времени = 0.1 сек. И критерий сходимости RMS = 1e-04.

На этом все. Запускаем задачу на решение.

С уважением, Денис П. Хитрых,
Директор АО «СимуЛабс».
2016-11-21_16-58-13

Мастер-класс: CFD расчет химического реактора #3.

Сегодня я публикую третью часть нашего мастер-класса по расчету химического реактора. В заключительной части мы расставим граничные условия и запустим задачу на решение.

Геометрия расчетной области в виде цилиндра показана на рисунке ниже. Все размеры даны в относительных величинах, привязанных к характерному размеру d = 10 мм. В статье, которую мы взяли в качестве основы для решения нашей задачи, выполнено моделирование для реактора с предсмешением, в котором два потока с разным химическим составом подводятся через кольцевой канал и круглую трубу диаметром 12 мм, соответственно. А вся геометрическая модель образмеривается относительно диаметра этой внутренней трубки.

В нашем случае никакого предсмешения нет, и поток поступает в зону реакции через обычный круглый канал диаметром 10 мм. Еще одно отличие нашей геометрии от референсной заключается в длине реактора. Мы искусственно увеличили ее почти в 2 раза. Все другие размеры практически совпадают.

geometry

Данную задачу можно решать как в полной трехмерной постановке, так и с условиями циклосимметрии. Все зависит от вычислительных ресурсов, которыми вы располагаете.

Какие сложности могут у вас возникнуть при генерации расчетной сетки?  Рассмотрим вариант задачи с циклосимметрией. На рисунке ниже я показал основные проблемы, которые могут возникнуть при разбиении сетки в режиме «по-умолчанию».

mesh

Первая проблема — это скошенные элементы на поверхностях симметрии и о во всем объеме расчетной сетки. Лечится это довольно просто. Для этого надо дополнительно декомпозировать геометрическую модель в местах пересечения входных и выходных каналов с основной расчетной областью.

Вторая проблема — это наличие призматических элементов на оси реактора по всей его длине. Избавится от  призм можно двумя способами. В первом случае необходимо с помощью виртуальных узлов, ячеек, ребер и пр. (Virtual Topology) построить L-топологию на входном и выходном каналах, соответственно . Другой вариант — вручную декомпозировать расчетную область на sweepable-объемы, как показано на рисунке ниже.

sweepable

Когда все проблемы решены, можно смело нажимать кнопку [Generate].

С уважением, Денис Хитрых,
АО «СимуЛабс».
2016-11-21_16-58-13

Мастер-класс: CFD расчет химического реактора #2.

reactorНебольшая вводная информация. Все, кто хочет мне написать лично, пишите на новый адрес внизу. Многие ваши письма попадают в спам, и я их не вижу.

Продолжаем заниматься расчетами химических реакторов в ANSYS CFX. Прошлый наш разговор мы закончили описанием инструментов  ANSYS CFX для задания элементарных реакций. Напомню, что для вызова панели [Reaction] используется иконка reaction1, которая находится в верхнем контекстном меню.  Для определения реакции (Insert Reaction и далее вбиваете имя реакции) вы последовательно проходите все закладки этой панели (слева-направо): Basic Settings→ Reactants→ Products→ Reaction Rates.

Чтобы упростить вам жизнь, я заранее подготовил CCL-файл с библиотекой всех реакций. Для его активации вы должны выполнить команду File→ Import→ CCL… Файл с реакциями вы можете скачать по этой ссылке

.

В закладке Reactants мы указываем исходные реагенты, в закладке Products — конечные реагенты (продукты реакции). А в закладке Reaction Rates мы определяем кинетику соответствующей реакции. Все реагенты, которые участвуют у нас в реакциях (а это начальные, промежуточные и конечные продукты), мы должны заранее определить с помощью инструмента materialMaterial . После этого все действующие реагенты нам станут доступны через список Materials List.

С помощью инструмента Material мы определяем теплофизические свойства реагентов (как и в обычной газодинамической задаче). Это достаточно трудоемкий процесс, так как нам необходимо создать 16 новых «материалов»: Cl2, Cl, CH3Cl, CH2Cl, HCl, CH2Cl2, CHCl2, CHCl2CH2Cl, CCl3, CCl3CCl3, CHCl2CHCl2, CHCl3, CCl3CH2Cl, CCl3CHCl2, CCl4, N2). Пример задания свойств хлора показан на рисунке ниже.

clГотовую библиотеку материалов для проекта, сохраненную в формате CCL, вы можете скачать здесь

.

«Подключаете» к проекту вы ее также, как и библиотеку реакций.

На сегодня это все. Я думаю, что в следующий раз мы займемся построением расчетной CAD-модели и и поговорим о расчетной сетке для данной задачи.

С уважением, Денис Хитрых,
АО «СимуЛабс».
2016-11-21_16-58-13

Мастер-класс: CFD расчет химического реактора

reactorСегодня мы с вами смоделируем задачу, связанную с расчетом химического реактора для производства хлороформа. В промышленности хлороформ обычно производят хлорированием метана или хлорметана.

Упрощенный (редуцированный) химический механизм превращения хлорметана в хлороформ включает 16 реагентов (исходных и конечных) и 21 реакцию, которые показаны в таблице ниже. В этой же таблице в двух крайних правых столбцах представлены значения для энергии активации E и предэкспоненциального фактора A, необходимые для задания температурной зависимости констант скоростей элементарных реакций в препроцессоре ANSYS CFX (или в другом газодинамическом пакете) при описании цепного механизма реакций.

reaction-mechanism_21_reaction

Более детально химический процесс образования хлороформа описывается 152 реакциями, в которых участвуют 38 реагентов (химических соединений). Описание этого механизма вы можете найти в работе Jimmy J. Shah  и Rodney O. Fox из Iowa State University: «Computational Fluid Dynamics Simulation of Chemical Reactors…» (1999).

Прежде чем перейти к постановке задачи в препроцессоре ANSYS CFX, вспомним несколько базовых понятий и законов химической кинетики, которые помогут вам лучше понять все наши дальнейшие действия.

  1. Что изучает химическая кинетика? Химическая кинетика изучает закономерности развития химических реакций.
  2. Почему описание даже относительно простого  химического процесса, например, горения водорода включает почти 40 элементарных реакций? Формально горение водорода выражается одной глобальной реакцией: 2H2 + O2 = 2H2O. Т. е. можно предположить, что в результате одного столкновения этих трех молекул (двух молекул водорода и одной молекулы кислорода) образуется две молекулы воды. С позиции теории вероятности такое событие является маловероятным (точнее невозможным). Поэтому реакция горения водорода протекает поэтапно (в несколько стадий) через промежуточное образование атомов водорода, кислорода и радикалов.  Реакции такого типа называются цепными или суммарными. Цепные реакции являются последовательностью большого числа элементарных реакций, выявлением и изучением которых занимаются химики и физики.
  3. Стехиометрическое уравнение (или уравнение реакции). Стехиометрическое уравнение представляет собой краткое выражение материального баланса реакции. Например, уравнение 2H2 + 1O2 = 2H2O означает, что всякий раз, как в процессе реакции затрачиваются две молекулы водорода, одновременно расходуется ровно одна молекула кислорода и образуются две молекулы воды. Коэффициенты перед реагентами называются стехиометрическими коэффициентами. Если реакция состоит из ряда стадий, то получается система из n стехиометрических уравнений.
  4. Закон Аррениуса. Для химических реакций характерна сильная нелинейная зависимость констант скорости k от температуры. Эта температурная зависимость описывается достаточно простой формулой — законом Аррениуса: k = Aexp(-Ea/RT).  Здесь Ea — это энергия активации (она имеет размерность [Дж/моль] и A — предэкспоненциальный фактор (или частотный фактор). Размерность A совпадает с размерностью k. Обратите внимание, что в ANSYS CFX  предэкспоненциальный фактор имеет размерность [time^-1 (mol m^-3)^(1-n)], где n — суммарный порядок реакции.
  5. Быстрая или медленная химия. В теории горения есть критерий подобия — число Дамкелера Dm, который определяет отношение скорости течения химической реакции к скорости физического процесса. Если Dm→0, то время протекания химической реакции намного больше характерного времени физического процесса. Т. е. можно не учитывать химические реакции и считать смесь газов химически инертной (как-бы «замороженной»). Другими словами, реакция развивается намного медленнее (среда не успевает измениться) по сравнению с изменениями гидродинамических параметров. Второй предельный случай противоположен первому (Dm→∞): в каждой точке потока очень быстро устанавливаются такие концентрации реагентов, которые соответствуют равновесному составу. Оценив значение числа Дамкелера, можно в первом приближении выбрать соответствующую модель горения: для «быстрой» химии — это модель EDM, для «медленной» химии — это модель FRC.

Читать далее